home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
CU Amiga Super CD-ROM 16
/
CU Amiga Magazine's Super CD-ROM 16 (1997-10-16)(EMAP Images)(GB)[!][issue 1997-11].iso
/
CUCD
/
Graphics
/
Ghostscript
/
source
/
gdevpe.c
< prev
next >
Wrap
C/C++ Source or Header
|
1996-09-17
|
8KB
|
363 lines
/* Copyright (C) 1989, 1990, 1991, 1994, 1996 Aladdin Enterprises. All rights reserved.
This file is part of Aladdin Ghostscript.
Aladdin Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing. Refer to the Aladdin Ghostscript Free Public
License (the "License") for full details.
Every copy of Aladdin Ghostscript must include a copy of the License,
normally in a plain ASCII text file named PUBLIC. The License grants you
the right to copy, modify and redistribute Aladdin Ghostscript, but only
under certain conditions described in the License. Among other things, the
License requires that the copyright notice and this notice be preserved on
all copies.
*/
/* gdevpe.c Private Eye display driver
Hacked by Fran Taylor, Reflection Technology Inc. */
#include "memory_.h"
#include "gx.h"
#include "gxdevice.h"
char *getenv(char *name);
typedef struct gx_device_pe_s {
gx_device_common;
byte *fbaddr;
unsigned regs;
} gx_device_pe;
#define pedev ((gx_device_pe *)dev)
typedef struct {
ushort reg, val;
} regval;
#define XSIZE 720
#define YSIZE 280
#define BPL 90
#define XPPI 160.0
#define YPPI 96.0
#define DEFAULT_ADDRESS ((byte *) 0xb8000000)
#define DEFAULT_REGISTERS 0x3d0
dev_proc_open_device(pe_open);
dev_proc_close_device(pe_close);
dev_proc_fill_rectangle(pe_fill_rectangle);
dev_proc_copy_mono(pe_copy_mono);
private gx_device_procs pe_procs =
{ pe_open,
NULL, /* get_initial_matrix */
NULL, /* sync_output */
NULL, /* output_page */
pe_close,
NULL, /* map_rgb_color */
NULL, /* map_color_rgb */
pe_fill_rectangle,
NULL, /* tile_rectangle */
pe_copy_mono,
NULL /* copy_color */
};
gx_device_pe far_data gs_pe_device =
{ std_device_std_body(gx_device_pe, &pe_procs, "pe",
XSIZE, YSIZE, XPPI, YPPI),
{ 0 }, /* std_procs */
DEFAULT_ADDRESS, DEFAULT_REGISTERS
};
static regval peinit[] = {{0x04, 0x1e}, {0x05, 0x00},
{0x04, 0x0c}, {0x05, 0x21},
{0x04, 0x0d}, {0x05, 0x98},
{0x08, 0x00}, {0x08, 0x1e},
{0x04, 0x1e}, {0x05, 0x01}};
static regval pedone[] = {{0x04, 0x1e}, {0x05, 0x10},
{0x04, 0x0a}, {0x05, 0x00},
{0x04, 0x0b}, {0x05, 0x07},
{0x04, 0x0c}, {0x05, 0x00},
{0x04, 0x0d}, {0x05, 0x00},
{0x04, 0x0e}, {0x05, 0x00},
{0x04, 0x0f}, {0x05, 0x00},
{0x08, 0x00}, {0x08, 0x29}};
int pe_open(gx_device *dev)
{
char *str;
int i;
if ((str = getenv("PEFBADDR")) != 0)
{
if (!sscanf(str, "%lx", &(pedev->fbaddr)))
{
eprintf("Private Eye: PEFBADDR environment string format error\n");
exit(1);
}
}
if ((str = getenv("PEREGS")) != 0)
{
if (!sscanf(str, "%x", &(pedev->regs)))
{
eprintf("Private Eye: PEREGS environment string format error\n");
exit(1);
}
}
for (i = 0; i < 10; i++)
outportb(pedev->regs + peinit[i].reg, peinit[i].val);
return 0;
}
int pe_close(gx_device *dev)
{
int i;
/* restore the screen */
for (i = 0; i < 16; i++)
outportb(pedev->regs + pedone[i].reg, pedone[i].val);
/* clear the frame buffer */
memset(pedev->fbaddr, 0, 4000);
return 0;
}
int pe_fill_rectangle(gx_device *dev, int x1, int y1, int w, int h,
gx_color_index color)
{
int x2, y2, xlen;
byte led, red, d;
byte *ptr;
/* cull */
if ((w <= 0) || (h <= 0) || (x1 > XSIZE) || (y1 > YSIZE))
return 0;
x2 = x1 + w - 1;
y2 = y1 + h - 1;
/* cull some more */
if ((x2 < 0) || (y2 < 0))
return 0;
/* clip */
if (x1 < 0) x1 = 0;
if (x2 > XSIZE-1) x2 = XSIZE-1;
if (y1 < 0) y1 = 0;
if (y2 > YSIZE-1) y2 = YSIZE-1;
w = x2 - x1 + 1;
h = y2 - y1 + 1;
xlen = (x2 >> 3) - (x1 >> 3) - 1;
led = 0xff >> (x1 & 7);
red = 0xff << (7 - (x2 & 7));
ptr = pedev->fbaddr + (y1 * BPL) + (x1 >> 3);
if (color)
{
/* here to set pixels */
if (xlen == -1)
{
/* special for rectangles that fit in a byte */
d = led & red;
for(; h >= 0; h--, ptr += BPL)
*ptr |= d;
return 0;
}
/* normal fill */
for(; h >= 0; h--, ptr += BPL)
{ register int x = xlen;
register byte *p = ptr;
*p++ |= led;
while ( x-- ) *p++ = 0xff;
*p |= red;
}
}
/* here to clear pixels */
led = ~led;
red = ~red;
if (xlen == -1)
{
/* special for rectangles that fit in a byte */
d = led | red;
for(; h >= 0; h--, ptr += BPL)
*ptr &= d;
return 0;
}
/* normal fill */
for(; h >= 0; h--, ptr += BPL)
{ register int x = xlen;
register byte *p = ptr;
*p++ &= led;
while ( x-- ) *p++ = 0x00;
*p &= red;
}
return 0;
}
int pe_copy_mono(gx_device *dev,
const byte *base, int sourcex, int raster, gx_bitmap_id id,
int x, int y, int w, int h,
gx_color_index zero, gx_color_index one)
{
const byte *line;
int sleft, dleft;
int mask, rmask;
int invert, zmask, omask;
byte *dest;
int offset;
#define izero (int)zero
#define ione (int)one
if ( ione == izero ) /* vacuous case */
return pe_fill_rectangle(dev, x, y, w, h, zero);
/* clip */
if ((x > XSIZE) || (y > YSIZE) || ((x + w) < 0) || ((y + h) < 0))
return 0;
offset = x >> 3;
dest = pedev->fbaddr + (y * BPL) + offset;
line = base + (sourcex >> 3);
sleft = 8 - (sourcex & 7);
dleft = 8 - (x & 7);
mask = 0xff >> (8 - dleft);
if ( w < dleft )
mask -= mask >> w;
else
rmask = 0xff00 >> ((w - dleft) & 7);
/* Macros for writing partial bytes. */
/* bits has already been inverted by xor'ing with invert. */
#define write_byte_masked(ptr, bits, mask)\
*ptr = ((bits | ~mask | zmask) & *ptr | (bits & mask & omask))
#define write_byte(ptr, bits)\
*ptr = ((bits | zmask) & *ptr | (bits & omask))
/* if ( dev->invert )
{
if ( izero != (int)gx_no_color_index ) zero ^= 1;
if ( ione != (int)gx_no_color_index ) one ^= 1;
} */
invert = (izero == 1 || ione == 0 ? -1 : 0);
zmask = (izero == 0 || ione == 0 ? 0 : -1);
omask = (izero == 1 || ione == 1 ? -1 : 0);
#undef izero
#undef ione
if (sleft == dleft) /* optimize the aligned case */
{
w -= dleft;
while ( --h >= 0 )
{
register const byte *bptr = line;
int count = w;
register byte *optr = dest;
register int bits = *bptr ^ invert; /* first partial byte */
write_byte_masked(optr, bits, mask);
/* Do full bytes. */
while ((count -= 8) >= 0)
{
bits = *++bptr ^ invert;
++optr;
write_byte(optr, bits);
}
/* Do last byte */
if (count > -8)
{
bits = *++bptr ^ invert;
++optr;
write_byte_masked(optr, bits, rmask);
}
dest += BPL;
line += raster;
}
}
else
{
int skew = (sleft - dleft) & 7;
int cskew = 8 - skew;
while (--h >= 0)
{
const byte *bptr = line;
int count = w;
byte *optr = dest;
register int bits;
/* Do the first partial byte */
if (sleft >= dleft)
{
bits = *bptr >> skew;
}
else /* ( sleft < dleft ) */
{
bits = *bptr++ << cskew;
if (count > sleft)
bits += *bptr >> skew;
}
bits ^= invert;
write_byte_masked(optr, bits, mask);
count -= dleft;
optr++;
/* Do full bytes. */
while ( count >= 8 )
{
bits = *bptr++ << cskew;
bits += *bptr >> skew;
bits ^= invert;
write_byte(optr, bits);
count -= 8;
optr++;
}
/* Do last byte */
if (count > 0)
{
bits = *bptr++ << cskew;
if (count > skew)
bits += *bptr >> skew;
bits ^= invert;
write_byte_masked(optr, bits, rmask);
}
dest += BPL;
line += raster;
}
}
return 0;
}